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1 Introduction

We determine the local and global maximally dense arrangements of three circles on any flat torus. We use a bigger

circle and two smaller circles in our packing. Let Cb denote the big circle with radius rb, let Cs1 denote one of

the two small circles with radius rs, and let Cs2 denote the other of the two small circles with radius rs. Assume

rs
rb
“
?

2´ 1, chosen as a result of Heppes’ [1] bound on the density of circle packings on the plane with size ratio
?

2´ 1.

Given a packing of Cb, Cs1 and Cs2 on a flat torus T , we lift the packing on T to the Euclidean plane. There

exists a lattice Λ generated by the basis vectors t ~w1, ~w2u such that T – R2{Λ, where lifts of one packing element

in the plane differ by elements of Λ. Also assume that ~w1 “ x1, 0y and ~w2 “ xL cosα,L sinαy with 0 ď L cosα ď 1
2

and π
3 ď α ď π

2 , as any torus is equivalent to one with these restrictions. We will adhere to this notation throughout

the following discussion.

2 Upper Bounds on the Density and the Radii

Proposition 2.1. For a packing on any flat torus, T , with three circles of radii rb, rs, rs with rs
rb
“
?

2 ´ 1, the

density of the packing is upper bounded by p4´2
?
2qπ

4 .

Proof. Suppose there exists a packing of three circles Cb, Cs1 , Cs2 on a flat torus T , with rs
rb
“
?

2´ 1. We lift the

packing on T to the Euclidean plane. A theorem of Heppes [1] about such a packing tells us that the density of the

densest packing of circles in the Euclidean plane with size ratio of
?

2´ 1 is p4´2
?
2qπ

4 « 0.92015. The density of a

packing on any flat torus is equal to the density of that packing lifted to the plane. Therefore, the density of any

packing on any flat torus is upper bounded by p4´2
?
2qπ

4 .

Next, we find the upper bound on the radii rb and rs.

Proposition 2.2. For a packing on a torus T with three circles of radii rb, rs, rs with rs
rb
“
?

2´ 1, rb is less than

or equal to

mintp 12

b

p´3`2
?
2qL sinα

´7`4
?
2

q, 12u
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and rs is less than or equal to

mintp
?

2´ 1qp 12

b

p´3`2
?
2qL sinα

´7`4
?
2

q, p
?

2´ 1q 12u.

Proof. We have that the density of a packing of Cb, Cs1 , Cs2 on a flat torus, 2πprsq
2
`πprbq

2

L sinα , is less than or equal to

4´2
?
2π

4 by Proposition 2.1. We solve for rb and we get that

rb ď
1

2

d

p´3` 2
?

2qL sinα

´7` 4
?

2
.

Suppose, for the sake of a contradiction, that rb ą
1
2 . We may lift our packing to the Euclidean plane and using

the trivial translations of the plane, we may assume that the center of Cb is located at p0, 0q. Because || ~w1|| “ 1,

the centers of the closets lifts of Cb are one unit away from the center of Cb. By our assumption, rb ą
1
2 , so with a

lift at ~w1, there is an overlapping of Cb with one of its closest lifts. This is a contradiction with the definition of a

packing. To resolve this issue of overlapping, rb must be less than or equal to 1
2 . We have the desired result.

Finally, we may now determine the upper bound on rs. We have that rs “ rbp
?

2´1q. Therefore, the maximum

value of rb on any flat torus also gives the maximum value of rs on any flat torus. Thus we get that the maximum

value of rs is mintp
?

2´ 1qp 12

b

p´3`2
?
2qL sinα

´7`4
?
2

q, p
?

2´ 1q 12u.

These two results will help us in determining the maximum number tangencies between our circles on any flat

torus.

3 Maximum Tangencies Between Cb, Cs1, and Cs2 on Any Flat Torus

T , With r1
r2
“
?
2´ 1

We start by defining what it means for a pair of circles to be n´tangent.

Defintion 3.1. In a circle packing on a torus if a pair of circles share n different points of tangencies, we call them

n´tangent.

In the Euclidean plane, a pair of circles are at most 1-tangent to each other, and no circle is self tangent; however,

this is not the case on a flat torus as the results of this section will show. We first consider how many tangencies

there can be between Csi , for i “ 1, 2 in our packing.

Proposition 3.2. Consider a packing of three circles Cb, Cs1 , and Cs2 on any flat torus T , with r1
r2
“
?

2´ 1. Cs1

and Cs2 can be at most 1-tangent to each other.

Proof. We prove by contradiction. Suppose there exists a packing of three circles Cb, Cs1 , Cs2 on a flat torus T ,

with rs
rb
“
?

2´ 1 where Cs1 and Cs2 are 2-tangent or more. Lift the packing on T to the Euclidean plane.
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Figure 1: The lifts of Cs1 .

Using the trivial translations of the plane, let the center of Cs1 is located at p0, 0q and Cs2 is located in a

fundamental domain bounded by ~w1 and ~w2. As Cs1 and Cs2 are 2-tangent the circle Cs2 must be tangent to two

lifts of Cs1 located at the points p0, 0q and the end points of ~w1 or ~w2 or ~w1 ` ~w2. See Figure 1.

If Cs2 is tangent to lifts of Cs1 at p0, 0q and the end point of ~w1, notice that the center of Cs2 must be on the

perpendicular bisector of the line segment from p0, 0q to ~w1. The smallest possible radius of Cs2 occurs when Cs2

is on this line segment. At this location the radius of rs is required to be 1
4 for a 2-tangency between Cs1 and Cs2 .

Therefore the radius of both Cs1 and Cs2 must be at least 1
4 . However, by Proposition 2.2, the maximum value of

rs is

mintp
?

2´ 1qp 12

b

p´3`2
?
2qL sinα

´7`4
?
2

q, p
?

2´ 1q 12u ď p
?

2´ 1q 12 ă
1
4 .

If Cs2 is tangent to the lifts of Cs1 at p0, 0q and the endpoints of ~w2 or ~w1 ` ~w2, or any other lattice vector,

we can repeat this argument to get a contradiction as for all ~v in Λ, ~v ě 1. Therefore, Cs1 and Cs2 cannot be

2-tangent.

Remark. For the existence of a 1-tangency between Cs1 and Cs2 , consider the case when || ~w2|| “ 1 and the end

point of ~w2 is located at p0, 1q. We now use the trivial translations of the plane to assume that the center of Cb is

located at p0, 0q and Cs1 and Cs2 are located in the fundamental domain bounded by ~w1 and ~w2. There exists a lift

of Cb whose center is located at p1, 0q. We move the centers of Cs1 and Cs2 to the line segment from p0, 0q to p1, 0q

as shown in Figure 2.

This is possible when rb “
1

2`4p
?
2´1q

. This packing gives us a 1-tangency between Cs1 and Cs2 . Thus, Cs1 and

Cs2 can be at most 1-tangent to each other.

Now we show that Csi , for i “ 1, 2, cannot be self tangent on a flat torus. The essence of this argument is the

same as the previous one, in which we showed that Csi , for i “ 1, 2, cannot be 2-tangent on a flat torus.
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Figure 2: This packing gives us a 1-tangency between Cs1 and Cs2 .

Proposition 3.3. Consider a packing of three circles Cb, Cs1 , and Cs2 on any flat torus T , with r1
r2
“
?

2 ´ 1.

Neither Cs1 nor Cs2 can be self-tangent.

Proof. We prove by contradiction. Suppose there exists a packing of three circles Cb, Cs1 , Cs2 on a flat torus T ,

with rs
rb
“
?

2´ 1 where, without loss of generality, Cs1 is self-tangent. We lift the packing on T to the Euclidean

plane.

Using the trivial translations of the plane, we may assume, without loss of generality, that the center of Cs1 is

located at p0, 0q. We know from Proposition 2.2, the maximum value of rs is less than or equal to p
?

2´ 1q 12 . Since

Cs1 is self-tangent, we have that the distance between the center of Cs1 and at least one of its lifts, must be less than

or equal to p
?

2´ 1q. The distance between the center of Cs1 and its lift with the center located at the endpoint of

~w1 is the shortest (and so if another lift is used, the problem illustrated here is worse), as for all ~v in Λ, ~v ě 1. If

Cs1 is self-tangent to itself along ~w1, then rs “
1
2 ; however, p

?
2´ 1q ă 1

2 . Therefore Cs1 is not self-tangent along

~w1 and we have a contradiction. We have showed that neither Cs1 nor Cs2 can be self-tangent.

While we have that Csi , for i “ 1, 2, cannot be self-tangent on a flat torus, the same is not true for Cb as the

following proposition shows.

Proposition 3.4. Consider a packing of three circles Cb, Cs1 , and Cs2 on any flat torus T , with rs
rb
“
?

2´ 1. Cb

is self-tangent at most once.

Proof. We prove by contradiction. Suppose there exists a packing of three circles Cb, Cs1 , Cs2 on a flat torus T ,

with rs
rb
“
?

2´ 1 where Cb is self-tangent twice. We lift the packing on T to the Euclidean plane.

Using the trivial translations of the plane, the center of Cb is located at p0, 0q. We know from Proposition 2.2,

the maximum value of rb is 1
2 . As Cb is self-tangent twice, the distance between the centers of Cb and two of its lifts
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Figure 3: We have a self tangency of Cb along ~w1.

located at the endpoints of ~w1 or ~w2 or ~w1 ` ~w2 is less than or equal to 1. Note || ~w1 ` ~w2|| ą 1, since || ~w1|| “ 1,

|| ~w2|| ě 1 with ~w2 “ xL cosα,L sinαy with x2 ` y2 ě 1. That is Cb with the maximum value of rb “
1
2 can not

be self-tangent along ~w1 ` ~w2. Using a similar argument we can also show that Cb can not be self-tangent along

´ ~w1` ~w2,´ ~w1´ ~w2, ~w1´ ~w2. Since all other lifts of Cb located at n ~w1`m ~w2 where |n| and |m| ą 1 is farther from

the origin, we needn’t consider them. So, the lifts of Cb that will give us the two distinct points of self tangency of

Cb will have their centers at the endpoints of ~w1 (and therefore also ~́w1, but these tangencies are equivalent and

do not count twice) and ~w2 (and therefore also ~́w2, but these tangencies are equivalent and do not count twice).

To achieve a self tangency of Cb along ~w1, we need rb “
1
2 as || ~w1|| “ 1 and 2prbq “ 2p 12 q “ 1. This implies

that the distance from p0, 0q to the center of the lift at w2 is also 1, and so L “ 1. This forces rs “ p
?

2´ 1q 12 . We

calculate the density, d, of this packing in terms of α, the angle between ~w1 and ~w2, and get that

d “
πp 12 q

2 ` 2πp 12 p
?

2´ 1qq2

sinα
.

As π
3 ď α ď π

2 , the minimum value of d is πp 12 q
2 ` 2πp 12 p

?
2 ´ 1qq2 « 1.05 as the function sin pxq from R to R is

increasing on r0, π2 s.

This density violates Proposition 2.1, so we have a contradiction and Cb does not have two distinct points of

self tangency.

Thus, Cb can have at most one point of self tangency.

Remark. For the existence of a self tangency, consider the packing of Cb, Cs1 , Cs2 on a 1ˆL (L « 1.29) rectangular

torus where L ě 1. Then we have a self tangency of Cb along ~w1. See Figure 3.

Now that we have established the fact that Cb can be self-tangent, we show that this is only possible if and only

if rb “ 1{2. We also show that a self-tangency of Cb implies that the magnitude of our second vector, ~w2 is greater

than 1.
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Proposition 3.5. Consider a packing of three circles Cb, Cs1 , Cs2 on a flat torus T with rs
rb
“
?

2 ´ 1. Cb is

self-tangent if and only if rb “
1
2 . And when Cb is self-tangent, we have that || ~w2| ą 1|.

Proof. We prove this directly. We lift the packing on T to the Euclidean plane. First we show that if rb “
1
2 , then

Cb is self-tangent. Note that || ~w1|| “ 1. As rb “
1
2 , the lift of Cb at p0, 0q and the lift of Cb at the end point of ~w1

are tangent.

Now we show that if Cb is self-tangent then rb “
1
2 . Let Cb be self-tangent, that is Cb centered at p0, 0q is

tangent to at least one of the lifts of Cb centered at ~w1 or ~w2. This is because if Cb at p0, 0q is self-tangent and

the other lift to which it is tangent is anywhere other than ~w1, then the radius would be bigger than 1{2 and we

would have overlaps between the lifts. We have that || ~w1|| ď || ~w2|| and, in our case, || ~w1|| ă || ~w1 ` ~w2||. So if Cb,

centered at p0, 0q, was tangent to the lifts of Cb centered at ~w2 or ~w1 ` ~w2, then rb “
1
2 || ~w2|| or rb “

1
2 || ~w1 ` ~w2||

respectively. That is, 2rb ě 1. For 2rb “ 1, || ~w2|| “ 1. However, we know from our argument in Proposition 3.4

that || ~w2|| ą 1. Therefore, 2rb ą 1; however, if 2rb ą 1 then along ~w1, we have that the lifts of Cb overlap, since

|| ~w1|| “ 1. Therefore, Cb must be self-tangent along ~w1. This gives us that rb “
1
2 as || ~w1|| “ 1.

Thus, Cb is self-tangent if and only if rb “
1
2 .

We will be using the following proposition to prove some of our other propositions that follow.

Proposition 3.6. Consider a packing of Cb, Cs1 , Cs2 on a flat torus T with rs
rb
“
?

2´ 1. If Csi , for i “ 1, 2 and

Cb are tangent then we can always lift the packing on T to the Euclidean plane where

1. Cb is centered at p0, 0q

2. Csi is in the fundamental domain spanned by ~w1 and ~w2

3. Csi is tangent to the lifts of Cb centered at p0, 0q, ~w1, ~w2 or ~w1 ` ~w2.

4. If Csi is tangent to the lift of Cb centered at p0, 0q, then it can not be tangent to the lift of Cb centered at the

endpoint of ~w1 ` ~w2.

Proof. We prove (3) by contradiction. Suppose that Csi was tangent to a lift of Cb centered at n ~w1 `m ~w2 where

pn,mq is not in the set tp0, 0q, p1, 0q, p0, 1q, p1, 1qu. Then the distance between the centers of Cs1 and that lift of Cb

must be less than or equal to the maximum value of rb plus the maximum value of rs, which is 1
2 `

1
2 p
?

2 ´ 1q “

1
2 « 0.707. The shortest distance between a point in the fundamental domain spanned by ~w1 and ~w2 and a lift of

Cb centered at n ~w1 ` m ~w2 where at least one of |n|, |m| ą 1, is d1 or d2 as shown in Figure 4. This is because

the shortest distance between two parallel lines is the length of the perpendicular segment between them and for a

fixed basis, the edges of the fundamental domain forms parallel lines with their respective lifts with when lifted to

the plane. That is, if we have a point in the fundamental domain spanned by ~w1 and ~w2 and one of the lifts of Cb

centered at n ~w1 `m ~w2, where at least one of |n|, |m| ą 1, then the shortest distances between the point and the
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Figure 4: The shortest distance between a point in the fundamental domain spanned by ~w1 and ~w2 and a lift of Cb
centered at n ~w1 `m ~w2 where at least one of |n|, |m| ą 1 is d1 or d2n

lift are the lengths of the perpendicular segment between the parallel lines: the edges of the fundamental domain

and their respective lifts, d1 and d2.

Both d1 and d2 must be at least sin π
3 « 0.866. This value is based on the fact that || ~w2|| ě 1, π

3 ď α ď π
2 , and

that sinx from R to R is increasing on rπ3 ,
π
2 s. This value, sin π

3 is strictly greater than 1?
2
« 0.707, the value needed

for a tangency of Cs1 with a lift of Cb centered at n ~w1`m ~w2 where pn,mq is not in the set tp0, 0q, p1, 0q, p0, 1q, p1, 1qu.

Therefore, we have a contradiction.

Now we prove (4) by contradiction. Suppose that Cs1 was tangent to the lifts of Cb centered at p0, 0q and the

endpoint of ~w1 ` ~w2 simultaneously. Then the distance from p0, 0q to the endpoint of ~w1 ` ~w2 must be less than or

equal to 1
2 ` p

?
2´ 1q ` 1

2 “
?

2. This value is determined using the maximum values of rb and rs and the triangle

inequality (the distance from p0, 0q to the endpoint of ~w1 ` ~w2 is the length of one side of the triangle with the

other two sides having a length of 1
2 `

1
2 p
?

2´ 1q).

The distance from p0, 0q to the endpoint of ~w1 ` ~w2 is

|| ~w1 ` ~w2|| “
a

p1` L cospαqq2 ` pL sinpαqq2 “
a

p1` 2L cospαq ` L2 ě
?

2,
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because L ě 1 and cos pαq.

The distance from p0, 0q to the endpoint of ~w1` ~w2 is equal to
?

2 only when α “ π
2 and || ~w2|| “ L “ 1. For all

other values of α and L, || ~w1 ` ~w2|| is greater than
?

2. We calculate the density of this packing and get that it is

2πp 12 q
2 ` πp 12 p

?
2´ 1qq2

1
« 1.7 ą

p4´ 2
?

2qπ

4
« 0.92015,

which violates the results of Proposition 2.1, which gives the upper bound on the density of a packing with circles

of radius ratio
?

2´ 1 on a flat torus. Therefore it not possible for Cs1 to be tangent to the lifts of Cb centered at

p0, 0q and the endpoint of ~w1 ` ~w2 simultaneously.

Now we can consider the tangencies between Cb and Csi , for i “ 1, 2, on a rectangular flat torus. We start with

rectangular flat torus because the tangencies are more restricted on a rectangular flat torus than on a flat torus as

the following two arguments will illustrate.

Defintion 3.7. Let R – R2{Λ where Λ is the lattice generated by the basis vectors t~v1, ~v2u such that ~v1 “ x1, 0y

and ~v2 “ x0, Ly with L ě 1. We call R a 1ˆ L rectangular flat torus.

Proposition 3.8. Consider a packing of three circles Cb, Cs1 , Cs2 on a 1 ˆ L rectangular flat torus (L ě 1) R,

with rs
rb
“
?

2´ 1. Csi and Cb are tangent at most twice, for i “ 1, 2.

Proof. We prove by contradiction. Suppose there exists a packing of three circles Cb, Cs1 , Cs2 on rectangular flat

torus T , with rs
rb
“
?

2 ´ 1 where, without loss of generality, Cs1 is 3-tangent, or more to Cb. We lift the packing

on T to the Euclidean plane. Since Cb is 3-tangent to Cs1 , we have, by Proposition 3.6, that the distance from Cs1

to the lifts of Cb at p0, 0q, ~w1, and ~w2 is rs ` rb.

To determine the location of the center of the lifts Cs1 , we can use the fact that the centers of Cb are located at

the vertices of the fundamental domain of Λ, a rectangle, and at least three of these centers are equidistant from

the center of Cs1 . Thus, Cs1 must be located where the diagonals of T intersect. See Figure 5.

By Proposition 2.2, rb ď
1
2 and rs ď

1
2 p
?

2 ´ 1q. The upper bounds of rb and rs, independent of L, are 1
2 and

1
2 p
?

2´ 1q, respectively. Since we are assuming a 3-tangency between Cs1 and Cb, we can use these upper bounds

on the radii to find an upper bound on L that allows a 3-tangency between Cs1 and Cb. Refer to Figure 6 for the

following results which rely on basic geometric properties.

We use the properties of right triangles to get that

cosα ě
1
2

1
2 `

1
2 p
?

2´ 1q
“

1
?

2
,

and so

α ď
π

4
.
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Figure 5: We want the point E to be equidistant from the points A, B and C and stay inside the blue rectangle.
That is only possible if the point E is located at point F. Notice that point F is where the diagonal of the blue
rectangle intersect.

Figure 6: This figure describes the notation used in the proof of Proposition 3.8
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Figure 7: To achieve a 3-tangency between Cs1 and Cb, the center of Cs1 must be located where the perpendicular
bisectors of ~w1 and ~w2 interect, as the center of Cs1 must be located along the perpendicular bisectors of the lines
from p0, 0q to the endpoints of ~w1 and ~w2.

Using complementary angles, we get that α ` β “ π
2 which implies β ě π

4 . So we have that cosβ ď 1?
2
. Now we

evaluate the cosine of β using our figure:

cosβ ě
L
2

1
2 `

1
2 p
?

2´ 1q
“

L
?

2
.

We have that cosβ ď 1?
2

and that cosβ ě L?
2

and that L ě 1; thus the upper bound of L that allows a

3-tangency between Cb and Cs1 is when L “ 1. However, since the lower and upper bounds on L are both 1, L “ 1.

When L “ 1, and α “ π{2, Proposition 2.2, rb is less than or equal to

c

p4´2
?
2qπ

4p2πp
?
2´1q2`πq

« 0.47 and rs is less than

or equal to p
?

2´ 1qp

c

p4´2
?
2q

4p2πp
?
2´1q2`πq

q « 0.19.

To achieve a 3-tangency between Cs1 and Cb, the center of Cs1 must be located where the perpendicular

bisectors of the lines from p0, 0q to the endpoints of ~v1 and ~v2 intersect, as the center of Cs1 must be located along

the perpendicular bisectors of ~v1 and ~v2. See Figure 7.

This is exactly where the diagonals of our 1ˆ 1 square intersect. However, the length of this intersection point

to the vertices of the square is
?
2
2 « 0.707 ą 0.47` 0.19 and we have that Cb and Cs1 cannot be 3´tangent. This

is a contradiction to our assumption.

Thus, there exists a maximum of two distinct tangencies between Cs1 and Cb, as well as between Cs2 and Cb

on a rectangular flat torus.

Remark. For the existence of a 2-tangency between Csi and Cb, for i “ 1, 2, refer to the results of Manning and
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Figure 8: We want the point E to be equidistant from the points A, B and C and stay inside the blue rectangle.
That is only possible if the point E is located at point F. Notice that point F is where the diagonal of the blue
parallelogram intersect.

Parker [2] on the optimal packings of three circles with radii rb, rs, rs,
rs
rb
“
?

2´ 1 on a square flat torus.

The previous argument only works for rectangular flat tori and not all tori, as the following proposition shows.

Proposition 3.9. Consider a packing of three circles Cb, Cs1 , Cs2 on any flat torus T , with rs
rb
“
?

2´ 1. Csi and

Cb are tangent at most thrice, for i “ 1, 2.

Proof. We prove by contradiction. Suppose there exists a packing of three circles Cb, Cs1 , Cs2 on a flat torus T ,

with rs
rb
“
?

2 ´ 1 where, without loss of generality, Cs1 is 4-tangent or more to Cb. We lift the packing on T to

the Euclidean plane. Since Cb is 4-tangent to Cs1 , we have that the distance from Cb and all of its lifts, located at

p0, 0q and the endpoints of ~w1 and ~w2 and ~w1 ` ~w2, is rb ` rs. By Proposition 3.6, the other lifts of Cb needn’t be

considered.

Since the center of all of the lifts of Cb are located at the vertices of T , and they are all equidistant from the

center of Cs1 ,we have that the center of Cs1 is located exactly where the diagonals of T intersect. See Figure 8.

Because the diagonals of a parallelogram are congruent if and only if the parallelogram is a rectangle, and the

distance from the center of Cs1 , located where the diagonals of T intersect, to the centers of all the lifts of Cb located

at the vertices of T is the same, T must be a rectangle. We know from Proposition 3.8 that on a rectangular torus,

Cs1 and Cb cannot be more than 2-tangent; therefore our assumption that Cs1 and Cb were 4-tangent was wrong.

Remark. For the existence of a 3-tangency between Csi and Cb, for i “ 1, 2, refer to the results of Manning and

Parker [2] on the optimal packings of three circles with radii rb, rs, rs,
rs
rb
“
?

2´ 1 on a triangular flat torus.

We have now determined the limits on the multiple tangencies between our circles on a flat torus. But we can
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Figure 9: This is what a packing in which the conditions of Proposition 3.10 hold must look like. In this proof we
assume that Cs1 is the pink circle and that Cs2 is the green circle

.

in fact improve the results of Proposition 3.9 by determining exactly which flat tori allow a 3-tangency between Cb

and Csi , for i “ 1, 2, and other conditions.

Proposition 3.10. Consider a packing of three circles Cb, Cs1 , Cs1 on a flat torus T with rs
rb
“
?

2 ´ 1. Let α

be the angle between ~w1 and ~w2. There exists a unique pα,Lq pair such that all of the following are true: Cb is

self-tangent, Cb is 3-tangent to both Cs1 and Cs2 , and Cs1 is tangent to Cs2 .

Proof. We claim that such a packing must look like the packing depicted in Figure 9.

We lift the packing on T to the Euclidean plane. For Cb to be 3-tangent to Cs1 , three of these lifts must have

their centers a distance of rb ` rs from Cs1 ’s center. By Proposition 3.6, we may assume that these lifts of Cb are

centered at p0, 0q, ~w1 and ~w2. Since the distances between the points p0, 0q and the endpoints of ~w1 and ~w2 to

the center of Cs1 are equal, the center of Cs1 must lie on the intersection of the perpendicular bisectors of the line

segments from p0, 0q to the endpoints of vectors ~w1 and ~w2. This means that Cs1 is centered on the circumcenter

of the triangle with vertices p0, 0q, the endpoint of ~w1 and the endpoint of ~w2. See Figure 9.

Using a similar argument for Cs2 , if Cb is 3-tangent to Cs2 as well, then Cs2 is centered on the circumcenter of

the triangle with vertices the endpoint of ~w1 ` ~w2, the endpoint of ~w1 and the endpoint of ~w2. Now, we force a

tangency between the two smaller circles and we get the packing depicted in Figure 9.

We can now analyze the geometry of such a packing, as done in Figure 10. Most of the geometry in Figure 10

comes from the tangencies of the circles. We assign the values of β and θ to the angles between RO and OP , and

between OP and OQ, respectively. Note that the angle β at the top left of Figure 10, in triangle OPR, is equal to

12



Figure 10: Refer to this Figure for the notation used in Proposition 3.10.

the angle β in the bottom right of Figure 10, in triangle QTS because the triangles that contain those angles are

congruent.

The following notation refers to the notation in Figure 10. We first determine the value of α. To find α, we

begin by solving for the angle x. We get the following equations using the properties of right triangles (the ones

contained in rhombus QPRT ):

sinx “
rs

rb ` rs
, (1)

and

tanx “
rs

a

prb ` rsq2 ` prsq2
. (2)

We solve for x and get that x “ arcsinp 12 p2 ´
?

2qq. Then, using our value for x, as well as the equations

π “ 2pθ ` βq ` 2x (which we derive from the fact that 2x ` θ ` β and α “ θ ` β are supplementary angles) and

α “ θ ` β, we get:

α “
1

2
pπ ´ 2 arcsinp1´

1
?

2
qq « 1.27.

To find α and L we use the fact that Cb is tangent to itself and therefore has radius 1
2 . This also gives us the radius

of Cs1 and Cs2 to be 1
2 p
?

2´ 1q. To solve for α, we first find θ and β using properties of right triangles in terms of

L. See Figure 11. We get that
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Figure 11: The derivations of equations (3) and (4) in Proposition 3.10 are shown in this figure.

cos θ “
p 12 qL

rs ` rb
“
p 12 qL

1?
2

and

cosβ “
1
2

rs ` rb
“

1
2
1?
2

.

Now we use the fact that α “ θ ` β to solve for α. We get that

α “ arccosp
p 12 qL

1?
2

q ` arccosp
1
2
1?
2

q.

Now we solve for L to get L “
?

2psinpπ4 ` arcsinp1´ 1?
2
qqq « 1.249.

We have thus found the unique pα,Lq pair that gives us self tangency of Cb, 3-tangency of Cb to both Cs1 and

Cs2 , and tangency of Cs1 to Cs2 .

4 The Associated Combinatorial Multi-Graphs

We have found the maximum number of tangencies and self tangencies between the circles Cb, Cs1 and Cs2 when

packed on a flat torus. In this section we describe the possible combinatorial multi-graphs that can correspond

to locally maximally dense packing with no free circless of Cb, Cs1 and Cs2 on a flat torus. The vertices in our

combinatorial multi-graphs will represent the circles Cb, Cs1 and Cs2 . An edge between two vertices will denote a
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Figure 12: The possible combinatorial multi-graphs we can have that may correspond to locally maximally dense
packing with no free circless of Cb, Cs1 and Cs2 on a flat torus with no free circles. vCb

corresponds to Cb,and vCsi

corresponds to Csi for i “ 1, 2.

distinct tangency between the two circles that correspond to those two vertices. A loop on a vertex will denote a

distinct self tangency of the circle that corresponds to that vertex. See Figure 12 for the possible combinatorial

multi-graphs that might be associated to a locally maximally dense packing with no free circles.

Proposition 4.1. The eight combinatorial multi-graphs in Figure 12 are all the possible combinatorial multi-graphs

that can be associated to a locally maximally dense packing with no free circles of Cb, Cs1 , Cs2 on a flat torus T

with rs
rb
“
?

2´ 1.

Proof. In Section 3, we found the maximum number of tangenices between two circles in our packing as well as

the maximum number of self tangenices of a circle in our packing. By Brandt, Dickinson, Ellsworth, Kenkel, and

Smith 1 [3], every circle is tangent to at least three circles in a locally maximally dense packing with no free circles

of circles on a flat torus with no free circles; therefore, each vertex on a combinatoral multi-graph must have at

least degree three. Also, by Connelly [4], if P is a locally maximally dense packing with no free circles of n circles

on a flat torus with no free circles, then the packing graph associated to P contains at least 2n´ 1 edges; since we

have three circles, all combinatorial graphs representing locally maximally dense packing with no free circless with

no free cricles must have at least five edges.

Let VCb
be the vertex in our combinatorial multi-graph that corresponds to the Cb in our packing, let VCs1

be

the vertex in our combinatorial multi-graph that corresponds to the Cs1 in our packing, and let VCs2
be the vertex

in our combinatorial multi-graph that corresponds to the Cs2 in our packing. Given the propositions in Section 3,

we may assume that there exists at least two edges between VCb
and VCs1

, as well as between VCb
and VCs2

because

every vertex must have degree three. If we did not have at least two edges between VCb
and VCsi

, for some i=1,2,

1The results of Brandt, Dickinson, Ellsworth, Kenkel, and Smith are technically for equal circle packings, but the arguments presented
there also apply to circle packings that are not neccessarily equal.
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Figure 13: Limiting the possible combinatorial multi-graphs.

we would not have a degree three vertex at that Csi since there only exists at most one edge between VCs1
and

VCs2
. We also have from Proposition 3.9 that there exists a maximum of three edges between VCb

and VCs1
, as well

as between VCb
and VCb

. Thus, without loss of generality, this gives us three choices (4,5, and 6) for the number of

edges incident to VCb
. Refer to the top row of Figure 13. With each of these three choices, we can also choose to

include the edge between VCs1
and VCs2

, since from Proposition 3.2 the maximum number of tangencies between

VCs1
and VCs2

on any flat torus is one. This doubles our number of choices from three to six. Again, refer to second

to top row of Figure 13. Finally, by Proposition 3.4, we know that Cb can have at most one self tangency, so we

can either have a loop on VCb
or not; this doubles our number of choices from six to twelve. Refer to the middle

top row of Figure 13. However, four of these choices can be eliminated either because not every vertex has degree

three, or because the minimum number of edges is less than five. Thus we are left with 8 possible combinatorial

multi-graphs. Refer to the bottom row of Figure 13 or Figure 12.

5 Embeddings of the Combinatorial Multi-Graphs on a Topological

Torus

Figures 14, 15, 16 show all the possible embeddings of the combinatorial multi-graphs in Figure 12 onto a topological

torus. These embeddings were found using a computer program, in which we inputted the combinatorial graphs

in Figure 12 and the outputs were different ways in which the inputted combinatorial graphs embedded onto a

topological torus. Now we begin to eliminate the embeddings which either do not correspond to packings of our

three cricles on a flat torus T with rs
rb
“
?

2 ´ 1 or do not correspond to locally maximally dense packing with

no free circles of our three circles on a flat torus T with rs
rb
“
?

2 ´ 1. The embeddings V3E06L01N01T11,

V3E06L00N01T21, and V3E06L01N01T21 do not correspond to a packing of Cb, Cs1 , Cs2 on a flat torus T with

rs
rb
“
?

2 ´ 1. The embeddings V3E05L01N01T12, V3E05L01N01T13, V3E06L00N01T11, V3E06L01N01T12 and

V3E06L01N01T13, do not correspond to a locally maximally dense packing with no free circles of Cb, Cs1 , Cs2 on
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Figure 14: These are all the embeddings that correspond to the combinatorial multi-graphs in Figure 12 that have
5 edges in total, not counting loops.

a flat torus T with rs
rb
“
?

2 ´ 1. See Figure 17 for the embeddings which do not correspond to packings or do

not correspond to locally maximally dense packing with no free circles of our three circles on a flat torus T with

rs
rb
“
?

2´1. The remaining nine embeddings are analyzed on Mathematica. Now we prove that certain embeddings

do not correspond to packings or do not correspond to locally maximally dense packing with no free circles of our

three circles on a flat torus T with rs
rb
“
?

2´ 1.

Proposition 5.1. The embedding V3E06L01N01T11, pictured in Figure 15 and 18, does not correspond to a packing

of circles Cb, Cs1 , Cs2 where rs
rb
“
?

2´ 1 on any flat torus T .

Proof. We prove this by contradiction. Suppose that the embedding V3E06L00N01T11, pictured in Figure 15 and

18, did correspond to a packing of circles Cb, Cs1 , Cs2 where rs
rb
“
?

2 ´ 1 on some flat torus T . We can see that

vertex 1, V1, in the embedding corresponds to Cb on any flat torus T as Propositions 3.3 and 3.4 show that only

Cb can have a self tangency on a flat torus T. Without loss of generality, let vertex 2, V2, correspond to Cs2 and

vertex 3, V3, correspond to Cs1 . We lift the packing on T to the Euclidean plane.

Refer to Figure 18 for the following argument. We have that V1V3V1, the green triangle, is congruent to the

V1V2V1, the orange and green triangle, with the base of the orange triangle exactly where the base of the green

triangle lies. Using the trivial translations of the plane, we may assume, without loss of generality, that the center

of Cb is located at p0, 0q. The lifts of Cb are located at the lattice points of Λ. The base of our triangles then lie
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Figure 15: These are all the embeddings that correspond to the combinatorial multi-graphs in Figure 12 that have
6 edges in total, not counting loops.
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Figure 16: These are all the embeddings that correspond to the combinatorial multi-graphs in Figure 12 that have
7 edges in total, not counting loops.

Figure 17: The embedding that is doubly crossed out does not correspond to a packing of our three circles on
any flat torus T , and the embeddings which are singly crossed out do not correspond to a locally maximally dense
packing with no free circles of our three circles on any flat torus T .
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Figure 18: Refer to this figure for the argument in Proposition 5.1 which shows that V3E06L01N01T11 does not
correspond to a packing of circles Cb, Cs1 , Cs2 where rs

rb
“
?

2´ 1 on any flat torus T .

Figure 19: This packing does not correspond to V3E06L01N01T11.

along ~w1, as by Proposition 3.5, because if Cb is self-tangent, it can be shown to be self-tangent only along ~w1 in

the fundamental domain of Λ.

There exits centers of lifts of Cs1 and Cs1 in the fundamental domain of Λ. According to the geometry of

congruent triangles that share a base, the centers may be reflected across ~w1 or lie on top of each other. However,

the edge from V1 to itself prevents this. See Figure 19.

Therefore, the centers must lie on top of each other. However, this implies that Cs1 and Cs2 would overlap,

which is not allowed in a packing, and we have a contradiction. Thus, the embedding V3E06L01N01T12 does not

correspond to a packing of Cb, Cs1 , Cs2 where rs
rb
“
?

2´ 1 on any flat torus T .

Proposition 5.2. The embeddings V3E06L00N01T21 and V3E06L01N01T21, as pictured in Figure 20 both do not

correspond to packings of Cb, Cs1 , Cs2 , where rs
rb
“
?

2´ 1, on any flat torus T .

Proof. We prove this by contradiction. First we show that V3E06L00N01T21 does not correspond to a packing of
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Figure 20: Refer to this Figure for the argument in Proposition 5.2.

Cb, Cs1 , Cs2 , where rs
rb
“
?

2´ 1, on any flat torus T . Then we use the fact that V3E06L00N01T21 is identical to

V3E06L01N01T21 with the exception of the edges between vertex 1 and itself. Then, because our proof here does

not rely on the edges between vertex 1 and itself, our same proof applies to showing both V3E06L00N01T21 and

V3E06L01N01T21 do not correpsond to packings of Cb, Cs1 , Cs2 , where rs
rb
“
?

2´ 1, on any flat torus T .

We have that vertex 1, V1, corresponds to Cb in our packing as by Proposition 3.9 and 3.2, show that only Cb

can be 2-tangent to two other circles in our packing. Without loss of generality, let vertex 2, V2, correspond to Cs2

and vertex 3, V3, correspond to Cs1 . We lift the packing on T to the Euclidean plane.

As shown in Figure 20, we have that V1V2V1V3, in yellow, is a rhombus as it a quadrilateral with all sides of

equal length, rb ` rs. We also have that the three pink line segments V1V2, V3V1, and V1V2, are parallel. This is

because V1V2 and V3V1 are opposite sides of a parallelogram and the edges form parallel lines with their respective

lifts with when lifted to the plane, and so V1V2 and V1V2 are parallel. Then because being parallel is a transitive

relation, we have that the three pink line segments V1V2, V3V1, and V1V2, are parallel. This implies that the dashed

distance between V3 and V1, as shown in Figure 20 must be rb ` rs as we have two congruent rhombii, V1V2V1V3,

in yellow, and V3V1V2V1, in orange. However, this would imply that Cs1 is 3-tangent to Cb. which contradicts the

embedding graph. Thus we have that V3E06L00N01T21 does not correspond to a packing of Cb, Cs1 , Cs2 , where

rs
rb
“
?

2´ 1, on any flat torus T .

We extend this argument to the embedding V3E06L01N01T21 to get that the embedding V3E06L01N01T21

also does not correspond to a packing of Cb, Cs1 , Cs2 , where rs
rb
“
?

2´ 1, on any flat torus T .

Now we will show in the following propositions that the embeddings V3E05L01N01T12, V3E05L01N01T13,

V3E06L00N01T11, V3E06L01N01T12 and V3E06L01N01T13 do not correspond to locally maximally dense packing

with no free circles of Cb, Cs1 , Cs2 on a flat torus T with rs
rb
“
?

2´ 1. We will do this using a result from [3] which
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Figure 21: Refer to this figure for the notation used in Proposition 5.3.

tells us that if a circle in a packing has its points of tangency contained in a closed semi-circle, then that packing

is not a locally maximally dense packing of circles on a flat torus with no free circles.

Proposition 5.3. The embeddings V3E05L01N01T12,V3E05L01N01T13, V3E06L00N01T11,V3E06L01N01T12,

and V3E06L01N01T13, pictured in Figure 21, do not correspond to locally maximally dense packings with no free

circles of circles Cb, Cs1 , Cs2 where rs
rb
“
?

2´ 1, on any flat torus T .

Proof. We prove this by contradiction. Suppose that the embeddings V3E05L01N01T12, V3E05L01N01T13,

V3E06L00N01T11, V3E06L01N01T12 and V3E06L01N01T13, pictured in Figure 21, did correspond to locally

maximally dense packings with no free circles, of circles Cb, Cs1 , Cs2 , where rs
rb
“
?

2´ 1, on some flat torus T . We

can see that in each of these embeddings, vertex 1, which we denote by V1 from here onwards, corresponds to Cb

on any flat torus T by either Propositions 3.4 and 3.3, which show that only Cb can have a self tangency on any

flat torus T or by Propositions 3.4 and 3.3, which show that only Cb can be 2-tangent to both other circles in our

packing. Without loss of generality, let V2 correspond to Cs2 and V3 correspond to Cs1 . We lift the packing on T

to the Euclidean plane. We will show that each of the embeddings has at least one circle whose points of tangency

are contained is a closed semi-cricle. Refer to 21 for the following notation.

We start with V3E05L01N01T12. Because Cb is self-tangent, by Proposition 3.5, we have that rb “
1
2 , and thus

rs “
1
2 p
?

2 ´ 1q. We have that in our packing, there exists two isosceles triangles as shown in Figure 21. We get
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that the pink angle α is π
2 and that the brown angle β is arccosp1´ 1?

2
q « 72.968˝. That is, α` β ă π. Thus, Cs1

has its points of tangency contained in a closed semi circle.

Now we move to V3E05L01N01T13. By Proposition 3.5, because Cb is self-tangent, we have that rb “
1
2 and

so rs “
1
2 p
?

2 ´ 1q. We have that in our packing, there exists two congruent isosceles triangles as shown in the

embedding. We solve for x and get that 2x “ π ´ 2 arcsinp1´ 1?
2
q. That is, 2x ă π. This tells us that Cs1 has its

points of tangency contained in a closed semi-circle.

Next we consider V3E06L00N01T11. We have that in our packing, there exits two congruent triangles as shown

in Figure 21. We solve for angle x and get that x “ arccosp1 ´ 1?
2
q « 72.968˝; thus 2x ă π. Thus, Cs1 has its

points of tangency contained in a closed semi circle.

Next we consider V3E06L01N01T12. Because Cb is self-tangent, by Proposition 3.5, we have that rb “
1
2 , and

thus rs “
1
2 p
?

2 ´ 1q. We have that in our packing, there exists two isosceles triangles as shown in Figure 21. We

solve for angles y and x and get that y “ π
2 and x “ arccosp1 ´ 1?

2
q « 72.968˝; that is x ` y ă π. Thus, Cs1 has

its points of tangency contained in a closed semi circle.

Finally we consider V3E06L01N01T13. Because Cb is self-tangent, by Proposition 3.5, we have that rb “
1
2 , and

thus rs “
1
2 p
?

2´ 1q. We have that in our packing, there exists two congruent isosceles triangles as shown in Figure

21. We solve for angle x and get that 2x “ π ´ 2 arcsinp1´ 1?
2
q. Thus, Cs1 has its points of tangency contained in

a closed semi circle.

Now we use Proposition 3.3 from the paper by Brandt, Dickinson, Ellsworth, Kenkel, and Smith [3], which

tells us that if a packing contains a circle whose points of tangency are contained is a closed semi-cricle, then that

packing is not locally maximally dense on a flat torus with no free circles. Therefore we have a contradiction to our

assumption.

In the next section we will analyze the remaining nine embeddings as shown in Figure 22.

6 Analyzing Embeddings on Flat Tori

In this section, we will separately analyze the remaining embeddings shown in Figure 22. Full details can be found

in the Mathematica documents. We will give an overview of our steps and results in this section. Our method on

Mathematica consists of first finding the centers of the circles in our embedding graphs in terms of some parameters,

which will vary case by case. We also find the basis vectors ~w1 and ~w2 in terms of these parameters. We then

verify that these centers and lattice vectors in fact do give us the right embedding graphs by checking edge lengths.

Then we impose bounds on the parameters so that the bounded parameters with those centers give us the correct

embedding graphs, locally maximally dense packings with no free circles, and do not over count any packings. We

then verify that the packings given by those bounded parameters and centers are in fact locally maximally dense
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Figure 22: Out of the 17 embeddings, these are the remaining 9 embeddings that were not eliminated in Section 5.

Figure 23: We choose α and β to be the angles between the segments V1V2 and V2V1, and V1V3 and V3V1, respectively.
We note that V1 must correspond to Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond
to Cs2 .

packings with no free circles. Then we associate those packings to the region in the moduli space that gives us

those packings. Finally we calculate and compare the denisty of those packings.

We have three embeddings (V3E05L00N01T11, V3E05L00N01T21, V3E06L00N02T11) that will have locally

maximally dense packings with no free circles that correspond to two dimensional open regions in the moduli space.

The other six embeddings will have locally maximally dense packings with no free circles that correspond to one

dimensional closed regions in the moduli space, bordering the open two dimensional open regions.

6.1 V3E05L00N01T11

We start by analyzing the first embedding which has locally maximally dense packings with no free cricles that

occupy an open two dimensional region in the moduli space: V3E05L00N01T11, as shown in Figure 23. We first

choose α and β to be the angles between the segments V1V2 and V2V1, and V1V3 and V3V1, respectively, as pictured

in Figure 23. Our choice of ~w1 and ~w2 is arbitrary. We note that V1 must correspond to Cb as Propositions 3.2 and

3.9 show us that only Cb can be 2-tangent to two other circles in our packing. Then, without loss of generality, we

let V2 correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

24



Figure 24: This figure shows what a typical locally maximally dense packing that corresponds to V3E05L00N01T11
looks like.

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We scale the whole

packing so that rb “
1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we chose to scale rb to 1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on α and β so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 24 shows what a general locally maximally dense packing that corresponds to

V3E05L00N01T11 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. The stresses are in the Mathematica document.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E05L00N01T11 occupy. We get the region depicted in Figure 25. See Mathematica document

for the stresses that verify this.

In the next corollary we approximate the locally maximally dense packing with no free circles that has the least

density that corresponds to the embedding graph of V3E05L00N01T11.
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Figure 25: This is the region of the moduli space that the locally maximally dense packings with no free circles
that correspond to the embedding V3E05L00N01T11 occupy.

Corollary. For the locally maximally dense packing with no free circles that has the least density that corresponds

to the embedding graph of V3E05L00N01T11, α « 2.49 and β « 2.49. This packing occupies the region of the

moduli space denoted by the red dot as shown in Figure 25.

We note that the region in Figure 25 is not contained in the moduli space strip. We can amend this using

reflections and inversion, both of which preserve density. We get the regions depicted in Figure 26.

We observe that the locally maximally dense packings with no free circles that correspond to the embedding

occupy an open two dimensional region in the moduli space. The locally maximally dense packings with no free

circles that correspond to the embedding V3E05L01N01T21 border a part of this two dimensional region. This is

because if we add the edges as shown in Figure 27 to V3E05L00N01T11 we get V3E05L01N01T21. We will further

analyze V3E05L01N01T21 in the following subsection.

6.2 V3E05L01N01T21

We now analyze the embedding V3E05L01N01T21, as shown in Figure 23. We first choose α and β to be the

angles between the line segments V1V2 and V2V1, and V1V3 and V3V1 respectively, as pictured in Figure 28. We

keep the same choice of ~w1 and ~w2 as we had for V3E05L00N01T11. We note that V1 must correspond to Cb as

Propositions 3.4 and 3.3 show us that only Cb can self-tangent in our packing. Then, without loss of generality, we

let V2 correspond to Cs1 and V3 correspond to Cs2 .
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Figure 26: This is the region of the ”moduli space” that the locally maximally dense packings with no free circles
that correspond to the embedding V3E05L00N01T11 occupy. Will- I can’t fix this picture because I don’t have the
corresponding Mathematica results. Once I get them from Dan, I will fix it and resend the document.
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Figure 27: If we add the dotted pink edges to V3E05L00N01T11 we get V3E05L01N01T2.

Figure 28: We choose α and β to be the angles between line segments V1V2 and V2V1, and V1V3 and V3V1 respectively.
We note that V1 must correspond to Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond
to Cs2 .
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Figure 29: This figure shows what a typical locally maximally dense packing that corresponds to V3E05L01N01T21
looks like.

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We note that by

Proposition 3.5, because Cb is self-tangent, rb must be 1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we have that rb “
1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2 ´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on α and β so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 29 shows what a general locally maximally dense packing that corresponds to

V3E05L01N01T21 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E05L01N01T21 occupy. We get the region depicted in Figure 30.

The region in Figure 30 is not contained in the moduli space strip. We can amend this using reflections and the

negative of inversion, both of which preserve lattices. We get the region depicted in Figure 31.

We note that, as we said previously, the locally maximally dense packings with no free circles that correspond

to the embedding V3E05L01N01T21 occupy a closed one dimensional region in the moduli space, bordering part

of the open two dimensional region that the locally maximally dense packings with no free circles that correspond

to the embedding V3E05L00N01T11.
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Figure 30: The tiny one dimensional circled blue region is the region of the moduli space that the locally maximally
dense packings with no free circles that correspond to the embedding V3E05L01N01T21 occupy.

V3E05L01N01T21inms.jpg

Figure 31: This is an equivalent region in the moduli space strip, that the locally maximally dense packings with
no free circles that correspond to the embedding V3E05L01N01T21 occupy. Will- I am missing this picture. I will
add it once I get it from Dan.
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Figure 32: We choose α and β to be the angles between the segments V1V2 and ~w1, and V1V2 and ~w2, respectively.
We note that V1 must correspond to Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond
to Cs2 .

6.3 V3E05L00N01T21

Now we analyze the second embedding which has locally maximally dense packings with no free cricles that occupy

an open two dimensional region in the moduli space: V3E05L00N01T21, as shown in Figure 32. We first choose α

and β to be the angles between the segments V1V2 and ~w1, and V1V2 and ~w2, respectively, as pictured in Figure

32. Our choice of ~w1 and ~w2 is arbitrary. We note that V1 must correspond to Cb as Propositions 3.2 and 3.9 show

us that only Cb can be 2-tangent to two other circles in our packing. Then, without loss of generality, we let V2

correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We scale the whole

packing so that rb “
1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we chose to scale rb to 1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on α and β so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 33 shows what a general locally maximally dense packing that corresponds to

V3E05L00N01T21 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles
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Figure 33: This figure shows what a typical locally maximally dense packing that corresponds to V3E05L00N01T21
looks like.

that correspond to V3E05L00N01T21 occupy. We get the region depicted in Figure 34.

Remark. The overlapping in Figure 34 means that there is a region where there are tori with two locally maximally

dense packings that are not homotopic.

We note that the locally maximally dense packings with no free circles that correspond to the embedding occupy

an open two dimensional region in the moduli space. The locally maximally dense packings with no free circles that

correspond to the embeddings V3E05L01N01T11 and V3E05L01N01T31 border parts of this two dimensional region.

This is because V3E05L01N01T11 and V3E05L01N01T31 are identical to V3E05L00N01T21 except for the fact that

V3E05L01N01T11 and V3E05L01N01T31 have a self-tangency of V1. We will further analyze V3E05L01N01T11

and V3E05L01N01T31 in the following subsections.

6.4 V3E05L01N01T11

We now analyze the embedding V3E05L01N01T11, as shown in Figure 35. We first choose β to be the angles

between line segments V1V2 and ~w1, as pictured in Figure 35. Our other parameter will be the length of ~w2 which

we will denote by L. Our positions of ~w1 and ~w2 are also shown in Figure 35. We note that V1 must correspond

to Cb as Propositions 3.4 and 3.3 show us that only Cb can self-tangent in our packing. Then, without loss of

generality, we let V2 correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We note that by

Proposition 3.5, because Cb is self-tangent, rb must be 1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on
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Figure 34: This is the region of the moduli space that the locally maximally dense packings with no free circles
that correspond to the embedding V3E05L00N01T21 occupy.

Figure 35: We choose β to be the angles between line segments V1V2 and ~w1. We note that V1 must correspond to
Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond to Cs2 .
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Figure 36: This figure shows what a typical locally maximally dense packing that corresponds to V3E05L01N01T11
looks like.

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we have that rb “
1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2 ´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on β and L so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 36 shows what a general locally maximally dense packing that corresponds to

V3E05L01N01T11 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E05L01N01T11 occupy. We get the region depicted in Figure 37.

We note that, as we said previously, the locally maximally dense packings with no free circles that correspond

to the embedding V3E05L01N01T11 occupy a closed one dimensional region in the moduli space, bordering part

of the open two dimensional region that the locally maximally dense packings with no free circles that correspond

to the embedding V3E05L00N01T21 occupy.

In this next subsection we analyze the other embedding whose locally maximally dense packings with no free

circles occupy a closed one dimensional region that borders the open two dimensional region that the locally

maximally dense packings with no free circles that correspond to the embedding V3E05L00N01T21 occupy.

6.5 V3E05L01N01T31

We now analyze the embedding V3E05L01N01T11, as shown in Figure 38. We first choose θ to be the angles

between ~w1 and ~w2, as pictured in Figure 38. Our other parameter will be the length of ~w2 which we will denote
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Figure 37: The one dimensional blue region is the region of the moduli space that the locally maximally dense
packings with no free circles that correspond to the embedding V3E05L01N01T11 occupy.
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Figure 38: We choose θ to be the angles between ~w1 and ~w2 We note that V1 must correspond to Cb and we let,
without loss of generality, V2 correspond to Cs1 and V3 correspond to Cs2 .

by L. We note that V1 must correspond to Cb as Propositions 3.4 and 3.3 show us that only Cb can self-tangent in

our packing. Then, without loss of generality, we let V2 correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We note that by

Proposition 3.5, because Cb is self-tangent, rb must be 1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we have that rb “
1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2 ´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on θ and L so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 39 shows what a general locally maximally dense packing that corresponds to

V3E05L01N01T31 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E05L01N01T11 occupy. We get the region depicted in Figure 40.

We note that, as we said previously, the locally maximally dense packings with no free circles that correspond

to the embedding V3E05L01N01T31 occupy a closed one dimensional region in the moduli space, bordering part

of the open two dimensional region that the locally maximally dense packings with no free circles that correspond

to the embedding V3E05L00N01T21 occupy.

In this next subsection we analyze the last other embedding with locally maximally dense packings with no free
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Figure 39: This figure shows what a typical locally maximally dense packing that corresponds to V3E05L01N01T31
looks like.

Figure 40: The one dimensional blue region is the region of the moduli space that the locally maximally dense
packings with no free circles that correspond to the embedding V3E05L01N01T31 occupy.
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Figure 41: We choose α and β to be the angles between the segments V1V2 and ~w1, and V1V2 and ~w2, respectively.
We note that V1 must correspond to Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond
to Cs2 .

circles that occupy to an open two dimensional region in the moduli space.

6.6 V3E06L00N02T11

We now analyze the last embedding which has locally maximally dense packings with no free cricles that occupy

an open two dimensional region in the moduli space: V3E06L00N02T11, as shown in Figure 41. We first choose α

and β to be the angles between the segments V1V2 and ~w1, and V1V2 and ~w2, respectively, as pictured in Figure

41. Our choice of ~w1 and ~w2 is arbitrary. We note that V1 must correspond to Cb as Propositions 3.2 and 3.9 show

us that only Cb can be 2-tangent to two other circles in our packing. Then, without loss of generality, we let V2

correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We scale the whole

packing so that rb “
1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we chose to scale rb to 1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on α and β so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 42 shows what a general locally maximally dense packing that corresponds to

V3E05L00N01T11 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.
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Figure 42: This figure shows what a typical locally maximally dense packing that corresponds to V3E06L00N02T11
looks like.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E06L00N02T11 occupy. We get the region depicted in Figure 43.

We note that the locally maximally dense packings with no free circles that correspond to the embedding occupy

an open two dimensional region in the moduli space. The locally maximally dense packings with no free circles

that correspond to the embeddings V3E06L01N01T11, V3E07L00N01T11 and V3E07L01N01T11 border a part of

this two dimensional region. V3E06L01N01T11 adds a self-tangency to V3E06L00N02T11; V3E07L00N01T11 adds

another edge to V3E07L00N01T11; V3E07L01N01T11 adds a self-tangency and another edge to V3E07L01N01T11.

We will further analyze V3E06L01N01T11, V3E07L00N01T11 and V3E07L01N01T11 in the following subsections.

6.7 V3E06L01N01T11

We now analyze the embedding V3E06L01N01T11, as shown in Figure 44. We first choose α and β to be the angles

between the line segments V1V2 and ~w1, and V1V2 and ~w2 respectively, as pictured in Figure 44. We note that V1

must correspond to Cb as Propositions 3.4 and 3.3 show us that only Cb can self-tangent in our packing. Then,

without loss of generality, we let V2 correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We note that by

Proposition 3.5, because Cb is self-tangent, rb must be 1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we have that rb “
1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2 ´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.
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Figure 43: This is the region of the moduli space that the locally maximally dense packings with no free circles
that correspond to the embedding V3E06L00N02T11 occupy.

Remark. This yellow region actually consists of tori on which there exists two non homotopic locally maximally
dense packings with no free circles that correspond to the embedding V3E06L00N02T11.

Figure 44: We choose α and β to be the angles between line segments V1V2 and ~w1, and V1V2 and ~w2 respectively. We
note that V1 must correspond to Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond
to Cs2 .
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Figure 45: This figure shows what a typical locally maximally dense packing that corresponds to V3E06L01N01T11
looks like.

Now we impose bounds on α and β so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 45 shows what a general locally maximally dense packing that corresponds to

V3E05L01N01T21 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E06L01N01T11 occupy. We get the region depicted in Figure 46.

We note that, as we said previously, the locally maximally dense packings with no free circles that correspond

to the embedding V3E06L01N01T11 occupy a closed one dimensional region in the moduli space, bordering part

of the open two dimensional region that the locally maximally dense packings with no free circles that correspond

to the embedding V3E06L00N02T11. In the next subsection we analyze one of the remaining two embeddings that

does this as well, V3E07L00N01T11.

6.8 V3E07L00N01T11

We now analyze the embedding V3E07L00N01T11, as shown in Figure 47. We first choose α and β to be the angles

between the line segments V1V2 and ~w1, and V1V2 and ~w2 respectively, as pictured in Figure 47. We note that V1

must correspond to Cb as Propositions 3.2 and 3.9 show us that only Cb can be 2-tangent to two other circles in

our packing. Then, without loss of generality, we let V2 correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We scale the whole

packing so that rb “
1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on
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Figure 46: The one dimensional blue region is the region of the moduli space that the locally maximally dense
packings with no free circles that correspond to the embedding V3E06L01N01T11 occupy.

Figure 47: We choose α and β to be the angles between line segments V1V2 and ~w1, and V1V2 and ~w2 respectively. We
note that V1 must correspond to Cb and we let, without loss of generality, V2 correspond to Cs1 and V3 correspond
to Cs2 .
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Figure 48: This figure shows what a typical locally maximally dense packing that corresponds to V3E07L00N01T11
looks like.

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we have that rb “
1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2 ´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on α and β so that the bounded parameters with the centers and endpoints we found

will give us the correct embedding graphs, locally maximally dense packings with no free circles, and will not

over count any packings. Figure 48 shows what a general locally maximally dense packing that corresponds to

V3E07L00N01T11 looks like. We verify that these packings are in fact locally maximally dense with no freee circles

by checking if the packings are properly stressed. See Mathematica document for the stresses.

Now we determine what region of the moduli space the locally maximally dense packings with no free circles

that correspond to V3E07L00N01T11 occupy. We get the region depicted in Figure 52.

We note that, as we said previously, the locally maximally dense packings with no free circles that correspond

to the embedding V3E07L00N01T11 occupy a closed one dimensional region in the moduli space, bordering part

of the open two dimensional region that the locally maximally dense packings with no free circles that correspond

to the embedding V3E06L00N02T11. In the next subsection we analyze the remaining embedding that does this

as well, V3E07L01N01T11, but with a point instead of a one dimensional closed region.

6.9 V3E07L01N01T11

We analyze the last of our nine embeddings here, V3E07L01N01T11. We recall from Section 3 that V3E07L01N01T11

is described by the conditions of Proposition 3.10. That is, the locally maximally dense packings of V3E07L01N01T11

with no free circles correspond to at most one point in the moduli space. We verify this on Mathematica following

our usual procedure.
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Figure 49: The one dimensional blue region is the region of the moduli space that the locally maximally dense
packings with no free circles that correspond to the embedding V3E07L00N01T11 occupy.
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Figure 50: We choose α to be the angle between ~w1 and ~w2. We note that V1 must correspond to Cb and we let,
without loss of generality, V2 correspond to Cs1 and V3 correspond to Cs2 .

Figure 51: This figure shows what the locally maximally dense packing that corresponds to V3E07L00N01T11 looks
like.

We first choose α to be the angle between ~w1 and ~w2, as pictured in Figure 50. We note that V1 must

correspond to Cb as Propositions 3.4 and 3.3 show us that only Cb can self-tangent in our packing. Then, without

loss of generality, we let V2 correspond to Cs1 and V3 correspond to Cs2 .

We lift the packing on T to the Euclidean plane. Using trivial translation of the plane we translate the center

of Cb to p0, 0q. We then find the centers of the other circles and the endpoints of ~w1 and ~w2. We note that by

Proposition 3.5, because Cb is self-tangent, rb must be 1
2 .

We verify that these centers and endpoints of the lattice vectors in fact do give us the right embeddings on

Mathematica by checking the distances between the centers of the lifts, i.e., the edge lengths in our embeddings.

Since we have that rb “
1
2 , all the edge lengths should be of magnitude rb ` rs “

1?
2
, or rs ` rs “

?
2 ´ 1, or

rb ` rb “ 1, where the magnitude depends on the tangencies.

Now we impose bounds on α so that the bounds on α with the centers and endpoints we found will give us

the correct embedding graphs, locally maximally dense packings with no free circles, and will not over count any

packings. Figure 51 shows what the locally maximally dense packing that corresponds to V3E07L00N01T11 looks

like. This result agrees with the results of Proposition 3.10 in Section 3. We verify that this packing is in fact

locally maximally dense with no free circles by checking if the packing is properly stressed. See the Mathematica

document.

Now we determine what region of the moduli space the locally maximally dense packing with no free circles that
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Figure 52: The blue point is the region of the moduli space that the locally maximally dense packing with no free
circles that corresponds to the embedding V3E07L00N01T11 occupies.

corresponds to V3E07L00N01T11 occupies. We get the point depicted in Figure 52.

We note that, as we said previously, the locally maximally dense packing with no free circles that corresponds

to the embedding V3E07L00N01T11 corresponds to a point in the moduli space, on the boundary of the open two

dimensional region that the locally maximally dense packings with no free circles that correspond to the embedding

V3E06L00N02T11 occupy.

We are now done with analyzing the remaining nine embeddings separately, and we have the regions of the

moduli space that the locally maximally dense packings with no free circles, of circles Cb, Cs1 , Cs2 , with a radius

ratio of rs
rb
“
?

2´ 1, occupy. We can summarize the results of this section in Figure 53, which shows the covering

of the moduli space by the regions that the locally maximally dense packings with no free cricles that correspond

to the remaining nine embeddings, occupy. There exists overlaps in the moduli space of the regions that the locally

maximally dense packings with no free cricles that correspond to different embeddings, occupy. This signifies that
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Figure 53: This figure shows the division of the moduli space into the regions that the locally maximally dense
packings with no free cricles that correspond to the remaining nine embeddings, occupy. Will- I will fix this picture
as well with the correct region for V3E05L00N01T11 once I get the picture from Dan.

there exsits multiple locally maximally dense packing with no free circles on the tori defined by the regions in the

moduli space with the overlaps.

In the next section, we will compare the denisities of all locally maximally dense packings with no free circles

on all flat tori to get the globally maximally dense packings with no free circles on all flat tori.

7 Main Results: Locally and Globally Maximally Dense Packings of

Cb, Cs1 and Cs2 on All Flat Tori

We start this section by classifying the regions of the moduli space by the packings that will be locally maximally

dense in those regions.

Theorem 7.1. All locally maximally dense packings of circles Cb, Cs1 , Cs2 with radius ratio rs
rb

on any flat torus

can be classified as shown in Figure 54.
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• In region A of the moduli space, the blue curve, we have that the locally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the free circle packing, and the packings that correspond to

the embedding graph of V3E05L01N01T11.

• In region B of the moduli space, the light blue open two dimensional region, we have that the locally maximally

dense packings of Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the free circle packing, and the packings that

correspond to the embedding graph of V3E05L00N01T21.

• In region C of the moduli space, the purple curve, we have that the locally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E05L01N01T31.

• In region D of the moduli space, the top part of the open two dimensional shaded purple region, we have that

the locally maximally dense packings of Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the free circle packing,

and the packings that correspond to the embedding graph of V3E05L00N01T11.

• In region E of the moduli space, the pink dot, we have that the locally maximally dense packings of Cb, Cs1 , Cs2

with radius ratio rs
rb

correspond to the packing that corresponds to the embedding graph of V3E07L01N01T11.

• In region F of the moduli space, the blue curve, we have that the locally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E06L01N01T11.

• In region G of the moduli space, overlayed by the two dimensional open red region, we have that the locally

maximally dense packings of Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to

the embedding graphs of V3E05L00N01T21 and V3E05L00N01T11.

• In region H of the moduli space, the green curve, we have that the locally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E07L00N01T11.

• In region I of the moduli space, overlayed by the two dimensional open yellow region, we have that the locally

maximally dense packings of Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to

the embedding graphs of V3E06L00N02T11 and V3E05L00N01T11.

• In region J of the moduli space, the purple curve, we have that the locally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E05L01N01T21.

• In region K of the moduli space, the white region, we have that the locally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

are those in which all circles are free.
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Figure 54: All locally maximally dense packings with no free cirlces of circles Cb, Cs1 , Cs2 with radius ratio rs
rb

on any
flat torus can be classified as such. Will- I will fix this picture as well with the correct region for V3E05L00N01T11
once I get the picture from Dan.
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Figure 55: This is the top down view of the density plot of the regions mentioned in Theorem 7.1.

Figure 56: This is a side view of the density plot of the regions mentioned in Theorem 7.1.

Remark. The reason we don’t have the free circle packing as a locally maximally dense packing in every point in

the moduli space is because the tori at those points can not allow free circles without overlaps. That is, those tori

can not ”fit” in free circles.

Now we compare the densities of the regions mentioned in Theorem 7.1. We find the densities of the regions

in Theorem 7.1 on Mathematica. We get a three dimensional plot, which is depicted in Figures 55, 56, 57. The

density plot shows the regions mentioned in Theorem 7.1 and the densities across those regions. It should be noted

that the black and dark blue regions in the density plot correspond to the free circle packings.

Figure 55 shows us the regions mentioned in Theorem 7.1 with the greatest densities. This is because if a region

is below another in the density plot, that is because it has a lower density. Therefore, we have the following result.

Theorem 7.2. All globally maximally dense packings of circles Cb, Cs1 , Cs2 with radius ratio rs
rb

on any flat torus
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Figure 57: This is the bottom up view of the density plot of the regions mentioned in Theorem 7.1.

can be classified as shown in Figure 58

• In region A of the moduli space, the blue curve, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

corresponds to the packings that correspond to the embedding graph of

V3E05L01N01T11.

• In region C of the moduli space, the purple curve, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E05L01N01T31.

• In region E of the moduli space, the pink dot, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packing that corresponds to the embedding graph of

V3E07L01N01T11.

• In region F of the moduli space, the blue curve, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E06L01N01T11.

• In region G of the moduli space, the two dimensional open pink region, we have that the globally maxi-

mally dense packings of Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the

embedding graphs of V3E05L00N01T21.

• In region H of the moduli space, the green curve, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E07L00N01T11.
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• In region I of the moduli space, the two dimensional open yellow region, we have that the globally maxi-

mally dense packings of Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the

embedding graphs of V3E06L00N02T11.

• In region J of the moduli space, the purple curve, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

correspond to the packings that correspond to the embedding graph of

V3E05L01N01T21.

• In region K of the moduli space, the white region, we have that the globally maximally dense packings of

Cb, Cs1 , Cs2 with radius ratio rs
rb

are those in which all circles are free.

The denisities of just the regions mentioned in Theorem 7.2 can be depicted using a contour plot. See Figure 59

Corollary. The packing depicted in Figure 60 has the highest density of all packings of circles Cb, Cs1 , Cs2 with

radius ratio rs
rb

on any flat torus.

We have thus achieved our goal of finding the locally and globally maximally dense packings of circles Cb, Cs1 , Cs2

with radius ratio rs
rb

on any flat torus.
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Figure 58: All globally maximally dense packings with no free cirlces of circles Cb, Cs1 , Cs2 with radius ratio rs
rb

on
any flat torus can be classified as such.
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Figure 59: This contour plot depicts the densities of the regions mentioned in 7.2. The pinker region have higher
densities than the bluer regions. The purplish regions have higher densities than the bluer regions, but lower
densities than the pinker regions.

Remark. While the contour plot seems to end at a certain curve above the blue region, that is not the case. The
density steadily decreases after that curve as the area of the tori steadily increases, while the radii of our circles stay
constant.

Figure 60: This packing has the highest density of all packings of circles Cb, Cs1 , Cs2 with radius ratio rs
rb

on any
flat torus.
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