
Modern Dimension Reduction Techniques
Examining t-SNE and UMAP

Daniel Ralston

Dec 21, 2020; Updated July 23, 2022

1 Introduction

Often it is useful to visualize a data set that has more than three attributes. We wish to reduce the number of
dimensions in a data set, normally so that it has less than or equal to three attributes so it can be visualized.
While there are many different algorithms that can complete such a task, for much of the past decade, the
t-SNE algorithm (2008) has been the leading algorithm in nonlinear1 dimension reduction. More recently,
the Uniform Manifold Approximation Projection (UMAP) algorithm (2018) has proven to outperform t-SNE
and has quickly gained popularity.[14] In this report, we begin by discussing the mathematics behind t-SNE
and UMAP, in sections 2 and 3 respectively. While each paper uses very different terminology, throughout
section 3 we make analogies between the two to display their similarities. In section 4, we compare the two
algorithms and highlight UMAP’s excellent performance. In section 5, we detail our results of experimenting
with the algorithms in Python. Finally, we conclude with section 6. Sections 2 and 3 make the paper slightly
front loaded, because I was interested in the inner workings of each algorithm, and why each was presented
so differently. Still, all parts of the project were very enjoyable!

1.1 Notation

Throughout this paper, we will use the following notation (with a few exceptions as noted). Some of this
notation is borrowed from the t-SNE and UMAP papers. [12][15]

• D is a given data set

• s is the number of entries (or the size) of D

• n is the ambient dimension (the number of attributes) of D

• d is the embedding dimension, or the number of dimensions our data D is being reduced to (we will
use Rd to describe this embedding space)

• xi represents the ith data point (or the ith entry) in D

• yi is the point in the d dimensional embedding, corresponding high dimensional data point xi

• GH is a mathematical graph that represents the high dimensional data from D (further described in
the UMAP section)

• GL is a mathematical graph that represents the low dimensional embedding of the high dimensional
data from D (also further described in the UMAP section)

1The method uses nonlinear techniques to describe distance.

1

2 t-SNE

Proposed by Laurens van der Maaten and Geoffrey Hinton, t-SNE builds on the stochastic neighbor embed-
ding (SNE) method which was introduced by Hinton and Roweis in 2002.[9] We will discuss this portion of
algorithm, before discussing the specifics which distinguish t-SNE from its previous counterparts. Further-
more, we present the algorithm from a probabilistic perspective, as it was outlined in the original paper.[15]
However, as discussed in the Analysis and Comparison section, t-SNE (like UMAP) can also be understood
as a graph-based algorithm. [4]

2.1 Overview

t-SNE attempts to maintain local structure of the data using the stochastic neighbor embedding process.
The first step in the t-SNE algorithm is to convert the Euclidean distance between all points xi in D
to probabilities that represent the probability of xi choosing its nearest neighbor, i.e. if the Euclidean
distance between two points xi and xj is high, the probability that xi chooses xj as its nearest neighbor
should be low. Next, the algorithm initializes the embedding space by distributing each point yi around
the origin according to a Student-t probability distribution – hence the t in t-SNE. Just like the in the high
dimensional space, t-SNE then calculates the Euclidean distance between all points yi and converts each
distance to a probability. Finally, Maaten and Hinton use an objective (or cost) function that measures the
difference between the probability of the closeness between every possible pair points xi and xj and their
low dimensional counterparts yi and yj . The algorithm minimizes this objective function. In practice, this
involves rearranging the low dimensional points so that for every pair of points the probability that yi and yj
are close reflects the probability that xi and xj are close in D. This creates a visualization which preserves
neighboring points.

2.2 Similarity Scores

The authors begin by defining the similarity of two data points xi and xj as pj|i, which is the conditional
probability that for a given data point xi, xi chooses xj as it’s neighbor. Mathematically defined, we have

pj|i “
expp´||xj ´ xi||

2{2σ2
i q

ř

k‰i expp´||xk ´ xi||
2{2σ2

i q
.

To break down this definition, first note that the Euclidean distance between the two points is given by
||xj ´ xi||. Next, consider the numerator of pj|i which looks “almost”2 like a Gaussian centered at a mean
of xi. Intuitively, the numerator centers this “almost” Gaussian distribution over a given point xi, which
non-linearizes the Euclidean distance from xi to every other data point.[3] Because we want to interpret each
pj|i as a probability, the denominator normalizes each term so that

ÿ

j‰i

pj|i “ 1.

Notice that the variance σi is dependent on each data point xi. Rather than choosing a fixed variance as
a parameter for all points to non linearize the Euclidean distance between points, this dependence arises

2“Almost”, because the term is missing the scalar 1
σ
?
2π

. The authors ignore this constant because the normalization of pj|i
cancels constant terms:

pj|i “
expp´||xi ´ xj ||

2{2σ2
i q

ř

k‰i expp´||xi ´ xk||
2{2σ2

i q
“

1
σ
?
2π
¨ expp´||xi ´ xj ||

2{2σ2
i q

ř

k‰i
1

σ
?
2π
¨ expp´||xi ´ xk||2{2σ

2
i q
.

2

because the distribution of points in D is unlikely to be uniform. A data set may have both dense and
disperse clusters, and since variance is related to the number of points that fall within a certain distance of
the mean, a model employing a constant variance may overcrowd its projection of dense clusters and fail to
project a disperse cluster as a cluster. Allowing variance to change depending on our choice of xi is what
allows the algorithm to project local structure of the data – if variance was constant, our projection would
be a global interpretation of the density of our data set.

2.3 Variance and Perplexity

For each data point xi, choosing such a variance σi is complex. Maaten and Hinton introduce the parame-
ter perplexity to the algorithm (denoted as Perp) and provide both intuitive and mathematical definitions.
Intuitively, the perplexity is defined as “the smooth measure of the effective number of neighbors3.” Mathe-
matically,

PerppPiq “ 2
ř

jppj|iq log2p1{pj|iq

where Pi is the probability distribution derived from each pj|i for a fixed i. We will attempt to show the
connection between the intuitive and mathematical definitions of perplexity, although a full mathematical
explanation is well beyond my understanding of information theory. Still, perplexity is the most important
parameter in the t-SNE algorithm, and its underpinnings deserve description. The term

ř

jppj|iq log2p1{pj|iq
is the Shannon entropy of the probability distribution Pi. The term log2p1{pj|iq is the self-information of
the similarity pj|i, which can be interpreted as the number of bits (hence the log2) needed to encode all
similarities pj|i for a fixed i. Multiplying this value by pj|i and summing over j comes from the expected
value formula. Putting this all together, the Shannon entropy can be interpreted as the expected value of the
self-information of a given similarity.[17] We raise 2 to this power to convert back to digits. As the expected
amount of information increases for a given i, this implies the density of the points surrounding the point xi
must increase since the self information of each similarity is inversely proportional to each similarity pj|i. In
the implementation of t-SNE, after a user specifies a value for this perplexity parameter, at each point xi a
binary search4 is performed to find the optimal value of σi which produces this value of perplexity.

2.4 Symmetrization

There are a few important notes before proceeding. First, note that because our variance depends on the
ith point, given that D is unlikely to be uniformly distributed, it is therefore unlikely that pj|i “ pi|j . While
this is not necessarily a problem, in order to improve minimization of cost function, the Maaten and Hinton
set

pij “
pi|j ` pj|i

2

the average of the two similarities. This average is described as symetricising the probabilities.5 Again, in
order to interpret pij as a probability, we normalize each term pij so that we have

ř

j‰i

pij “ 1.

3“smooth” here means that while nearest number of neighbors is normally a positive integer, perplexity can be any positive
real number [normally ranging from 1 to 50]

4While this may seem like an expensive calculation that must be done at each xi, this is actually a minor computational
expense.[14]

5This is the first difference (admittedly an unmotivated difference) between t-SNE and the SNE algorithm proposed by
Hinton and Roweis in 2002.

3

Figure 1: The “heavier tails” means that larger distances are represented probabilistically higher.[13]

2.5 Initializing the Lower Dimensional Embedding

The algorithm must project each point xi to its corresponding representation yi in the d dimensional em-
bedding. Each point yi is initialized from randomly sampling a Student-t probability distribution6 centered
at the origin in Rd. The reason for this is to further space out points in order to combat the crowding
problem. The crowding problem refers to the fact that in higher dimensions, space expands. For example,
a sphere with radius r has a volume that scales with rm where m is the dimension. Thus, when projecting
into lower dimensions, data points can easily crowd, making it difficult to distinguish clusters. The authors
chose a Student-t distribution because it reflects a slightly more linear relationship between probability and
positive distance from its mean. In other words, for a given similarity score, we desire that points yi and
yj are further apart than on a Gaussian distribution curve. This amounts to what the authors describe as
“heavier tails”, as shown in Figure 1. The Student-t distribution reflects this property.

Mathematically, distance between low dimensional points yi is analogous to the high dimensional case.
Consider defining the similarity qj|i between yi, yj P Rd as

qj|i “

1
1`||yi´yj ||2

ř

k‰l
1

1`||yk´yl||
2

.

In this case the term 1
1`||yi´yj ||2

corresponds to non linearizing the Euclidean distance from yi to all other

yj by centering a Student-t distribution with a variance of one over yi. The denominator, as in the high
dimensional case, normalizes each similarity score so that we may interpret all qj|i with the probability
density function Qi. Additionally, because variance is constant, no symmetrization is needed, and thus
qj|i “ qi|j “ qij .

2.6 Creating the Visualization

We have determined two conditional probabilities (similarities) from non-linearizing distance. Consider
H “ tPi|1 ď i ď su, the set of all similarities pij , and L “ tPi|1 ď i ď su, the set of all similarities
qij . Ideally, for all unordered pairs i, j (with 1 ď i ď s, 1 ď j ď s), we want we want pji « qji. A cost
function that captures the difference between two such sets is the KL-Divergence (KL) function. From here
on out, updating all points yi to minimize this objective function is a standard machine learning task, and
the authors employ the gradient descent method.7 Because KL-Divergence and gradient descent methods

6This is the second of the two main differences between t-SNE and the SNE model, which used a Gaussian distribution.
7This method calculates the gradient vector ∇KL at a given point on the cost function, and then takes steps in the direction

of ´∇KL.

4

are canonical in machine learning, we will exclude those topics from our discussion. Still, a brief comparison
of KL-Divergence and gradient descent methods with the methods UMAP uses will be made in the Analysis
and Comparison section.

2.7 Comments

The first step in this algorithm is to convert Euclidean distance into a probability. Throughout our class,
we haven’t talked about how one could represent distance with probability. In part, this is because most
probability density functions are nonlinear, meaning that the distance between points will become highly
nonlinear, making calculations difficult. Really, we would rather have our algorithm simply be an isometry
that could perfectly preserve distance between points. As I understand, converting distance into a probability
attempts to replicate an isometry in this case, since it allows for a map between the two spaces that can be
optimized in order to somewhat preserve distance.

3 UMAP

While very similar to t-SNE, the Uniform Manifold Approximation and Projection algorithm (UMAP) is
explained as a graph-based approach, and is motivated with theoretically advanced mathematical machinery.
We will explain it in the context the paper presents the material, but we will also make comparisons to t-SNE
in order to display the two algorithms’ similarities.

3.1 Overview

Relying on some sophisticated manifold theory, the authors of the UMAP paper begin by noting that all
high dimensional data points xi can be thought of as points on the surface of some n ´ 1 manifold in Rn.
With this frame of thinking, the objective of the algorithm is to represent this high dimensional manifold
as accurately as possible in Rd. The best approximation of our manifold would occur if our points were
uniformly distributed, or in other words, the union of unit balls B around each data point xi would provide
a cover C of the manifold8. Unfortunately, real world data is unlikely to be uniformly distributed. In order to
solve this problem, the authors define a Riemannian metric on the manifold, which changes at each point xi.
With this varying way of measuring distance, we can assume the data uniformly distributed. In other words,
because with a global metric the distance between points in D is probably not the same, in order to make
the distance between points the same, the notion of distance must vary from point to point. This varying
metric serves the same purpose of letting σi vary for each point xi in t-SNE. Next, the cover C of our data
set can be understood combinatorially as a edge-weighted undirected graph, where each edge corresponds to
a probabilistic measure derived from our varying Riemannian metric; edges are analogous to the similarities
pj|i in t-SNE. Finally, a similar low dimensional graph is assembled analogously to initializing the qji terms
in t-SNE. Cross entropy assigned as the cost function for UMAP, and stochastic gradient descent is used to
minimize the difference between the high and low dimensional graph representations.

8Consider that we would get a better measurement of the topography of Maine if we got our data from a lattice of lat/long
coordinates (relatively uniformly distributed), rather than as measured at every house – we would have barely any data for
northeastern Maine

5

3.2 Geometrical Foundations

The first step in the algorithm is to calculate a Riemannian metric at each point xi which represents the high
dimensional manifold as uniformly distributed. In the original paper, Lemma 1 gives a precise definition of
the Riemannian geodesic between two points p, q on a manifold:

1

r
dRnpp, qq,

where dRnpp, qq is the original metric in the space, and r is the radius of the ballBq centered at q. Additionally,
Bq must have volume

πn{2

Γp0.5n` 1q
.

This volumetric requirement is motivated by theoretic in Riemannian Geometry.[4] Notice that because n
is the dimension of the data set D, this volume is constant. This is exactly where our assumption that our
data is uniformly distributed is influencing our metric for the data, since we want a ball around each point to
contain the same number amount of data points.9 Not only is this a complicated description of the geodesic
between two points, but we are also introduced to a new notion of a metric, one that is localized to each
point xi.

3.3 From Manifolds to Graphs

Representing all such discrete metric spaces probabilistically as a fuzzy simplicial structure is the critical
link between the theory of UMAP and its implementation. Interestingly, our varying definition of distance is
enough to capture the shape of the manifold. To convert between our cover of the data set and a graph-based
approach which can be implemented by a computer, the authors take the nerve of the covering. If C is a
covering made up of open balls Bi (where i is the index of each high dimensional data points), then the
nerve of C is given by

NpCq “ tJ |J Ă I and
č

jPJ

Uj ‰ Hu.r18s

In words, this means that the nerve is a collection of sets of indices, where each set J in NpCq corresponds
to the points around j for which the cover intersects with J . Thus, each element in the nerve corresponds
to points which have covers which are connected. So, if say t1, 2, 3u P NpCq, this would imply that the
open covers of points x1, x2, and x3 all intersect. If we simply connect all of these points, this becomes a
simplicial10 object, specifically a Cech complex. Roughly speaking, the Nerve Theorem states that the nerve
of a cover is a sufficiently accurate representation of the manifold D lives on. Although the Cech complex
is guaranteed to accurately approximate our data, computing the higher dimensional simplices becomes
computationally cumbersome. For better computational speed, the authors use the Vietoris-Rips complex,
which just constructs a 1- simplex if two balls intersect – if two balls don’t intersect then each point is already
a 0 simplex, a point.[6] This creates a fully connected graph GH between points whose open balls intersect.
The authors of UMAP justify the round-about approach to creating a graph by arguing their explanation
provides motivation at each step, and gives a foundational understanding for why the specific graph was
constructed.[11] Other benefits of this approach are discussed in the Analysis and Conclusion section.

9Rather than using volumes in Riemannian geometry, most graph based algorithms create a nearest neighbors k hyper
parameter. As detailed in the UMAP documentation, k serves as a way of controlling the number of points given within a ball,
thereby altering the radius of the ball. If much of the data set was encompassed in each ball around a given point, the discrete
Riemannian metrics defined on each point will be representative largely of the global structure of the data; the opposite is true
if only a few points exist within each ball. While the theory of defining a Riemannian metric does not account for the parameter
k, the UMAP implementation does.

10A k dimensional simplex is called a k-simplex, which is formed by taking the convex hull of k ` 1 independent points, as
shown in Figure 2.

6

Figure 2: A point, line, triangle, and tetrahedron respectively. [11]

3.4 Graph Edges and Symmetrization

Consider an edge in GH between points xi and xj . Because the definition of distance is highly localized to
each point, as we are further on this edge away from xi we are less confident of the accuracy of the metric
defined at xi. To represent such decay in confidence, the authors now define the weight from point xi to
point xj as

wpxi, xjq “ expp
´maxp0, φpxi, xjq ´ ρi

γi
q,

where the function φ is the ambient metric in the high dimensional data. γi and ρi are derived from the
Riemannian metric local to the point xi. γi ensures that the value of each weight is greater than 0 and
less than or equal to 1. ρi is the distance measured from xi to its nearest neighbor using the metric φ.
Subtracting this value ensures that the weight from xi to its nearest neighbor is 1, since expp0q “ 1. In other
words we are confident11 that the metric at xi still is locally relevant at its nearest neighbor point. This
property is motivated by theoretical constraints, and is referred to as the property of “local connectivity,” a
surprisingly consequential characteristic that will be further discussed in later sections. The weight between
two graph vertices xi and xj is directly analogous to the similarity pj|i between the two data points xi and
xj .

12 This somewhat unusual function is derived from the description of a fuzzy topological representation.

Because γi and ρi are dependent on our choice of xi, it is not always true that wpxi, xjq “ wpxj , xiq, a
property we desire.13 In t-SNE, this symmetrization was done by taking the average of pj|i and pi|j . UMAP
uses a different method. In the UMAP graph analogy, wji represents a weighted edge from points xi to xj ,
symmetrization is equivalent to ensuring that only one edge exists between points. UMAP symmetrization
is accomplished with

wij “ wji “ wpxi, xjq ` wpxj , xiq ´ wpxi, xjq ¨ wpxj , xiq.

If we consider that the edges are weights, this equation can be understood as the probability that either edge
exists, but not both.14

3.5 Embedding, the Cost Function, and Optimization

To create a d dimensional embedding, the algorithm creates a weighted graph GL in our low dimensional
space using a similar procedure in the high dimensional case, with one key difference. In our projection
we require that our results be globally interpretable, so our weight function for our d dimensional graph is
defined with a constant metric not dependent on a given data point xi – in practice this metric is normally
Euclidean. Using math, the low dimensional weight function v is given by

vij “ vpyi, yjq “
1

p1` apyi ´ yjq2b
.r13s

11Although these weights are not probabilities, because their values are all between 0 and 1, an edge weight of 1 can be
thought of as similar to a chance of 100%.

12This is exactly why Leland McInnes characterizes t-SNE as a graph based approach
13Currently, GH is a directed graph, since there is a different weight associated with leaving and arriving at the vertex; we

want an undirected graph, which is more computationally efficient.
14The probability of event A and event B both happening is given by P pAq ¨P pBq, and the probability that event A or event

B happens is P pAq ` P pBq.

7

Figure 3: Standard UMAP implementation in dark blue, and standard t-SNE in light green.[12]

The constants a, b P R are chosen so that each edge weight is greater than 0 and less than 1. The user’s
choice of the minimum distance parameter, which changes how close points are represented together in the low
dimensional representation, also affects the choices of a and b. Notice because the metric is globally uniform,
GL is already undirected, since weights are naturally symmetric vpyi, yjq “ vpyj , yiq. In the implementation of
UMAP, a forced directed graph layout algorithm creates the low dimensional representation, the advantages
of which are discussed in the Analysis and Comparison section. Finally, rather than KL-Divergence, the
UMAP authors choose cross entropy (CE) as a cost function, which measures the difference between the
corresponding weights in GH and GL. The authors employ a stochastic gradient descent method to minimize
CE, which is very similar to the gradient descent method used in t-SNE, except that it is computationally
faster by calculating the gradient using sub samples of the objective function. Like t-SNE, from here on out
UMAP relies on standard machine learning techniques to efficiently update GL to better represent GH , in
accordance with minimizing CE.

4 Analysis and Comparison

Although the UMAP algorithm undoubtedly provides better motivation, as was McInnis’ aim, the imple-
mentation of the algorithm may be the source of its greatest strengths.[4] According to its authors, UMAP is
preferable over t-SNE: first, UMAP is undoubtedly faster in every respect when compared to t-SNE; second,
it better preserves the global structure of the underlying data.

4.1 UMAP’s Faster Runtime

The most practical advantage of UMAP is it’s significantly faster run time, which is favorable to t-SNE for
large values of s, n, and d.

For a data set with over 10,000 entries, UMAP is noticeably faster than t-SNE. This is largely a weakness of
t-SNE, rather than a strength UMAP, since UMAP is only just faster than comparable dimension reduction
techniques as shown in Figure 3. Such inefficiency of t-SNE occurs from the normalization required in
calculating each pj|i, specifically the denominator term

ř

k‰i

expp´||xk ´ xi||
2{2σ2

i q. Thus, for a data set of

size s, at every data point xi, s ´ 1 terms must be added together. Since there are s data points, this is
roughly s2 terms that must be added together in t-SNE. Because of UMAP’s theoretical foundation, UMAP
does not require this summation.

8

Figure 4: [12]

Figure 5: [12]

With respect to the dimension of the data set, UMAP is also much faster than competing nonlinear dimension
reduction methods. Interestingly, UMAP’s efficiency in this respect is mainly attributable to the assumption
the manifold is always locally connected, which ensures that every vertex in the high dimensional graph has an
edge leaving it. As it happens, graph-based optimization methods that are used in UMAPs implementation
can perform faster on locally connected graphs. As we see in Figure 4, it is not that t-SNE is inefficient,
rather UMAP is uniquely clever with this assumption.

Finally, although UMAP and t-SNE are mainly used as visualization tools, if we consider embedding D
in a dimension d ą 3, t-SNE is exponentially slower than UMAP, as shown in Figure 5. This is due to
the KL Divergence Cost function that t-SNE uses. KL Divergence can be thought of as a measure of
the information gained by revising one’s beliefs from the original probability distribution to the updated
probability distribution. In practice, updating a probability distribution involves using Bayes Theorem,
given as

P pmodel|dataq “ P pmodelq ¨
P pdata|modelq

P pdataq
.r16s

To calculate the normalization constant P pdataq requires using binary space partitioning trees, which scale
exponentially as the embedding dimension gets larger. Such trees are the cause of t-SNE’s inability to reduce
the data to higher dimensions. This is why McInnes et al. claim that UMAP may be a good dimension
reduction tool, which could be helpful in a machine learning pipeline.[12]

9

Figure 6: KL-Divergence KL on the right, and cross entropy CE on the left. X represents the distance
between points in a higher dimension, and Y represents the distance between the corresponding points in a
lower dimension. Notice that when X is large and Y is small, CE has a much higher penalty than KL. [14]

4.2 Does UMAP Actually Preserve Global Structure Better than t-SNE?

The authors of UMAP mention that their algorithm “preserves more of the global structure [than t-SNE
does].” About a year ago (Dec. 19), researchers Kobak and Linderman published the preprint titled “UMAP
does not preserve global structure any better than t-SNE when using the same initialization.”[10] They
claim that the reason why some say UMAP preserves the global structure better is because of the way it
initializes points in the low dimensional space, which is not original to UMAP. The default initialization for
UMAP uses a technique called Laplacian eigenmaps, whereas the default initialization for t-SNE is random
about a Student-t distribution. Kobak and Linderman show that when points are randomly initialized in
the low dimensional space with UMAP and t-SNE, each projection poorly represents the global structure
of the data. Moreover, when low dimensional points are initialized in UMAP with Laplacian eigenmaps
and in t-SNE with a PCA based method, both algorithms produce similar and improved results. Although
the most recent version of the UMAP paper acknowledges Koback and Linderman, the UMAP authors still
argue that different cost functions used plays an important role. Consider the plots shown in Figure 6,
which demonstrates that the t-SNE cost function does not provide a large penalty when large distances are
embedded as smaller distances. As opposed to UMAP, in t-SNE there is little incentive for the model to
correct for large distances that are represented as small in Rd, and so global distances are not preserved to
the same degree as UMAP.

5 Experimentation

5.1 Python Implementation

The California Housing Prices data set[2] was used to implement the model in Python 3.8.15 This data
contains 20,640 entries and has ten attributes.16 Therefore, we are assured that our data set, while not
being unmanageable with a laptop processor, will sufficiently test each algorithm to expose their differences.

15The UMAP implementation used is from the UMAP Python 3 library [11]. The t-SNE implementation used is from the
sklearn.manifold library.[1]

16longitude, latitude, housing median age, total rooms, total bedrooms, population, households, median income, median
house value, ocean proximity

10

Figure 7

(a) UMAP (nearestneighbors “ 10) (b) t-SNE (perplexity “ 8)

Figure 8: Output of the two algorithms with a comparably low measurement of the number of nearest
neighbors. [12][15] With a free Google Colab account, UMAP took 24 seconds to run, whereas t-SNE took
36 seconds.

First, we use the sklearn implementation of k-Means to cluster the data into 5 clusters – this number of
clusters was chosen from the elbow method.[8] Next, we ran both UMAP and t-SNE, varying the nearest
neighbors and minimum distance parameters, as well as the perplexity parameter for t-SNE.

UMAP’s visulization displays a lack of clustering in the data set. Although the specific shapes are not
interpretable, from Figures 8 and 9, we conclude that this data set represents a range of data points that
begin to morph into each other. We see from Figure 7 that data points in the cities of LA and San Francisco
(purple, red, orange, and blue) are all adjacent to each other, but also that housing data corresponding
to the blue properties are relatively different from properties represented by purple points. t-SNE, with
perplexity values that are relatively similar to the corresponding nearest neighbor plots[6], in some respects
better captures the clustering of the data set by isolated the purple data points. Still, in many places t-SNE
also reflects the lack of clustering in the data set. In this respect, t-SNE is worse than UMAP because
it fails to completely unravel the data, as shown in Figures 8 and 9. In this respect, because the t-SNE
visualization is more “jumbled together” and less separated than the UMAP visualization, we conclude that
this implementation of UMAP better preserves the data’s global structure.

5.2 Implications of Local Connectivity in UMAP

In the UMAP algorithm, the assumption that GH is locally connected (every vertex has an edge leaving it),
leads to a faster runtime with respect to data set dimensions. In practice this ensures that data points form
clusters, since we are essentially requiring that every point has a nearby point; no point can be completely
isolated from the others.

To better understand the implications of this assumption, consider the least-possible-clustered data set, a
lattice. For visualization purposes, we will consider using UMAP to reduce a 2-dimensional lattice to a
1-dimensional line, as shown in Figures 10, 11, and 12. Ideally, UMAP would capture the lattice structure

11

(a) UMAP (nearestneighbors “ 300) (b) t-SNE (perplexity “ 50)

Figure 9: Output of the two algorithms with a high measurement of the number of nearest neighbors (at
the top of each parameter’s respective range as specified by each paper). [12][15] With a free Google Colab
account, UMAP took 1 minute and 13 seconds to run, whereas t-SNE took 3 minutes and 11 seconds.

Figure 10: A lattice of 1024 points, columns of width 8 colored differently to visualize where the points land.

with points that are mostly evenly spaced on a line. Instead, the algorithm tends to cluster the data into
groupings, which persists with different values of the nearest neighbor parameter. This makes sense, since
although the nearest neighbors parameter does account for how much of the global structure of the data
should be preserved, the problem here lies in capturing the local structure of the data. Also, changing the
minimum distance parameter, only affects the scale of the projection, and does not change the clustering in
our projection.

In the real world, we don’t expect our data to resemble the lattice structure; we expect some clustering
in data sets, since data analysis is focused on finding relationships within a data set. Still, examining the
projection of a lattice structure reveals that UMAP struggles to capture isolation in a data set, meaning
that UMAP is not a good tool to project data with many outliers or anomalies.

Figure 11: The projection with nearest neighbors parameter equal to 15 and the minimum distance parameter
equal to 1

2 . Notice similar colored points are roughly placed together.

12

Figure 12: A zooming in of Figure 11 to display the clustering of small groups of points, which is due to the
local connectivity assumption.

6 Conclusion

Perhaps the biggest take away from this analysis is the benefits of a theoretically strong mathematical
foundation behind an algorithm. In many cases, the strengths of UMAP were motivated from theoretical
constraints. From an analytical perspective, the deep mathematical underpinnings of the algorithm motivate
its construction and provide a more thorough approach to visualizing high dimensional data.

6.1 Other Dimension Reduction Methods

As with most nonlinear dimension reduction techniques, both t-SNE and UMAP do not produce directly
interpretable results.17 Principal Component Analysis (PCA) is a linear reduction technique, which produces
an interpretable visualization where the dimensions are the directions of greatest variance in the data. The
drawback is that this method assumes the data can be linearly separated. A nonlinear technique that uses
similar techniques to t-SNE and UMAP is Largevis. All three of these algorithms prioritize local structure
over global structure, in order to best preserve clustering. As the authors of UMAP note, multidimensional
scaling (MDS) seeks to better preserve the global scale of the data, and the PHATE algorithm is a hybrid
approach that attempts to account for local structure while still employing MDS for global preservation. [12]

6.2 Future Exploration

With more time, there are many questions that could be explored. I think it would be interesting to further
examine the inner workings of both UMAP and t-SNE. For example, it would be interesting to analyze how
UMAP operates without the assumption that GH is locally connected – perhaps the algorithm could work
better on more disperse data sets without this assumption. In t-SNE, what type of visualizations would
we archive if we let the variance σ be constant for all values of i; would we get a more globally accurate
projection? Furthermore, I am interested in the idea of stripping these algorithms down to their bare
essentials, even at the expense of losing some of the quality of our visualization. Could there be a simpler
way of designing an algorithm similar to UMAP, that (even if its visualization was much lower quality) uses
more basic mathematics? These questions could be analyzed by writing our own implementation of UMAP
or t-SNE. For a beginner coder such as myself, this is a daunting task. Thankfully there are already Python
constructions of UMAP and t-SNE from scratch.[7][5]

17shapes, Euclidean distances between points, etc

13

References

sklearn.manifold.tsne. https://scikit-learn.org/stable/modules/generated/sklearn.manifold

.TSNE.html.

California housing prices. https://jmyao17.github.io/Kaggle/California Housing Prices.html,
1990. Accessed: 2020-12-15.

t-sne, clearly explained. https://www.youtube.com/watch?v=NEaUSP4YerM, 2017. Accessed: 2020-12-15.

Pca, t-sne, and umap: Modern approaches to dimension reduction. https://www.youtube.com/watch?v=
YPJQydzTLwQ, 2018. Accessed: 2020-12-15.

Gabriel Beauplet. t-sne in python from scratch. https://github.com/beaupletga/t-SNE, 2018.

Andy Coenen and Adam Pearce. Understanding umap. Technical report, Google Pair, 2020.

Jack Downson. How to program umap from scratch. https://morioh.com/p/884822e1fbd6, 2019. Ac-
cessed: 2020-12-15.

Alind Gupta. Elbow method for optimal value of k in kmeans. https://www.geeksforgeeks.org/elbow

-method-for-optimal-value-of-k-in-kmeans/, 2019. Accessed: 2020-12-15.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems, volume 15, pages 857–864. MIT Press,
2003.

Dmitry Kobak and George C. Linderman. Umap does not preserve global structure any better than t-sne
when using the same initialization. bioRxiv, 2019.

Leland McInnes. Understanding UMAP, 2018.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv, 2020.

Nikolay Oskolkov. How exactly umap works. https://towardsdatascience.com/how-exactly-umap

-works-13e3040e1668, 2019. Accessed: 2020-12-15.

Nikolay Oskolkov. Why umap is superior over t-sne. https://towardsdatascience.com/why-umap-is

-superior-over-tsne-faa039c28e99, 2019. Accessed: 2020-12-15.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne, 2008.

Wikipedia. Bayes’ theorem — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php
?title=Bayes’%20theorem&oldid=994418363, 2020. [Online; accessed 20-December-2020].

Wikipedia. Entropy (information theory) — Wikipedia, the free encyclopedia. http://en.wikipedia.org/
w/index.php?title=Entropy%20(information%20theory)&oldid=992799080, 2020. [Online; accessed
20-December-2020].

Wikipedia. Nerve of a covering — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index
.php?title=Nerve%20of%20a%20covering&oldid=984128522, 2020. [Online; accessed 20-December-2020].

14

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://jmyao17.github.io/Kaggle/California_Housing_Prices.html
https://www.youtube.com/watch?v=NEaUSP4YerM
https://www.youtube.com/watch?v=YPJQydzTLwQ
https://www.youtube.com/watch?v=YPJQydzTLwQ
https://github.com/beaupletga/t-SNE
https://morioh.com/p/884822e1fbd6
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/
https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://towardsdatascience.com/why-umap-is-superior-over-tsne-faa039c28e99
https://towardsdatascience.com/why-umap-is-superior-over-tsne-faa039c28e99
http://en.wikipedia.org/w/index.php?title=Bayes'%20theorem&oldid=994418363
http://en.wikipedia.org/w/index.php?title=Bayes'%20theorem&oldid=994418363
http://en.wikipedia.org/w/index.php?title=Entropy%20(information%20theory)&oldid=992799080
http://en.wikipedia.org/w/index.php?title=Entropy%20(information%20theory)&oldid=992799080
http://en.wikipedia.org/w/index.php?title=Nerve%20of%20a%20covering&oldid=984128522
http://en.wikipedia.org/w/index.php?title=Nerve%20of%20a%20covering&oldid=984128522

	Introduction
	Notation

	t-SNE
	Overview
	Similarity Scores
	Variance and Perplexity
	Symmetrization
	Initializing the Lower Dimensional Embedding
	Creating the Visualization
	Comments

	UMAP
	Overview
	Geometrical Foundations
	From Manifolds to Graphs
	Graph Edges and Symmetrization
	Embedding, the Cost Function, and Optimization

	Analysis and Comparison
	UMAP's Faster Runtime
	Does UMAP Actually Preserve Global Structure Better than t-SNE?

	Experimentation
	Python Implementation
	Implications of Local Connectivity in UMAP

	Conclusion
	Other Dimension Reduction Methods
	Future Exploration

